مدلسازی نفوذپذیری سیستم بیوراکتورغشایی با استفاده از شبکه عصبی مصنوعی

Authors

  • دنیز محسنی دانشجوی کارشناسی ارشد گروه مهندسی شیمی، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران.
Abstract:

مدلسازی برای سیستم های پیچیده ای همچون بیوراکتور غشایی به دلیل امکان اجرای آزمایشهای مجازی زیاد در زمان کوتاه ابزاری قدرتمند است، اگرچه نیازمند اعتبار تجربی و تبدیل فرایند به مدل ریاضی می باشد. در این پژوهش به مدلسازی فرایند فیلتراسیون توسط شبکه های عصبی با استفاده از نرم افزار MATLAB 8.1 (2013) پرداخته شده و از داده های تجربی یک سیستم بیوراکتور غشایی غوطه ور مجهز به غشاء کوبوتا جهت تصفیه فاضلاب شهری با غلظت مواد جامد محلول (MLSS) بالا استفاده شده است. 2/3 از داده های تجربی جهت ساخت شبکه، آموزش و ارزیابی شبکه استفاده گردید، سپس شبکه طراحی شده جهت تخمین نفوذپذیری 1/3 از داده ها و همچنین سیستم بیوراکتور غشایی مشابه دیگر مورد استفاده قرار گرفت.جهت آموزش شبکه الگوریتم trainlm اعمال شده است. مقدار ضریب تعیین (R^2) جهت پیش بینی نفوذپذیری برای 1/3از داده های سیستم اول 0/93 و در مورد سیستم مشابه 0/92 می باشد.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

تخمین نفوذپذیری نهایی خاک‌ها با استفاده از مدل شبکه عصبی مصنوعی (مطالعه موردی: مزرعه پردیس ابوریحان)

نفوذپذیری یکی از مهم‌ترین پارامترهای فیزیکی خاک‌ها و از داده‌های بنیادی طرح‌های آبیاری و زه‌کشی است. اگرچه برای توصیف این پدیده، تاکنون روش‌ها و روابط مختلف تئوری و یا تجربی ارایه شده، ولی هنوز هم از جنبه‌های تطابق و امکان کاربرد علوم جدیدی نظیر روش شبکه‌های عصبی مصنوعی در پیش‌بینی این پدیده، جای تحقیق و بررسی وجود دارد. در تمام روش‌های موجود برای تعیین روابط نفوذ، انجام آزمایش‌های زمان‌بر و پر...

full text

مدلسازی غلظت تری هالومتان در آب شرب با استفاده از شبکه عصبی مصنوعی

در این مطالعه جهت مدل سازی میزان غلظت تری هالومتان در آب شرب، از شبکه عصبی مصنوعی استفاده شده است. پس از آموزش، شبکه عصبی قادر است براساس مشخصات کیفی آب و میزان غلضت کلر در آب شرب، میزان غلظت تری هالومتان را پیش بینی کند. جهت ارزیابی و تشریح مدل، آب تصفیه خانه سنگر واقع در شهرستان رشت به صورت موردی  بررسی شده است. از اندازه گیری های انجام یافته بر روی آب شرب تصفیه خانه سنگر، داده های مورد نیاز،...

full text

مدلسازی منطقه‌ای دبی‌های اوج در زیر حوزه‌های آبخیز سد سفیدرود با استفاده از شبکه عصبی مصنوعی

The model in this research was created based on the Artificial Neural Network (ANN) and calibrated in the Sefid-rood dam basin (excluding Khazar zone). This research was done by gathering and selecting peak flows of hydrographs from 12 sub basins, the concentration time of which was equal to or less than 24 hours and was caused only by rainfall. From all the selected sub basins, totally 661 hyd...

full text

مدلسازی و شبیه‌سازی بیوسنسور آنزیمی برای تشخیص آفلاتوکسین B1 با استفاده از شبکه عصبی مصنوعی

افلاتوکسین B1 (AFB1) سمی ترین گروه آفلاتوکسین‌هاست که باعث آلودگی محصولات کشاورزی شده و اثرات مرگ باری بر سلامت انسان دارد. تشخیص AFB1 در مواد غذایی و خوراکی توسط بیوسنسورها سریع، کم هزینه و دقیق است. در این مقاله به مدلسازی و شبیه‌سازی ‌واکنش‌های شیمیایی در بیوسنسور پتانسیومتری AFB1 جهت تعیین ثابت‌های  بهینه نرخ واکنش پرداخته شده است. شبیه‌سازی ‌واکنش‌های شیمیایی توسط نرم افزار COMSOL...

full text

مدلسازی منطقه‌ای دبی‌های اوج در زیر حوزه‌های آبخیز سد سفیدرود با استفاده از شبکه عصبی مصنوعی

The model in this research was created based on the Artificial Neural Network (ANN) and calibrated in the Sefid-rood dam basin (excluding Khazar zone). This research was done by gathering and selecting peak flows of hydrographs from 12 sub basins, the concentration time of which was equal to or less than 24 hours and was caused only by rainfall. From all the selected sub basins, totally 661 hyd...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 12  issue 58

pages  57- 69

publication date 2017-08-23

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023